Histogram Sort with Sampling

Course: COMP 5704
Parallel Algorithms and Application in Data Science
Megha Agarwal

IntrOduction e Whatis Sorting?
e Why do we need it?

e T[ypes of Sorting:
o Sequential
o Parallel

e Chief goal of parallel sorting

Input sequence 6 | 2|1 |9 |4 |7 |38

Output Sequence 1 |2 |3 |4 |5 |6 | 7|8

Sample Sort

1.

W N

Sample: ps keys

Split: p-1 keys are selected
Exchange data: pt bucket to pt"
processor

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Samples

Histogram Sort

1.
2.
3.
4.

Broadcast a probe

Create local histogram

Sum to form global histogram
Finalize splitters

S1 S2 S3 S4 S5 S6

Histogram Sort with Sampling

e Goal: Approximate Splitting => N(1+¢)/p
e Processoriowns all keys greater than equal to S(i) and less than S(i+1)
:= Global balancing

e Input keys: A(0),...,A(N-1)
e Redistributed to: 1(0),...,I(N-1), where if A(j)=I(k), it has rank k.

e Satisfactory splitter: S(i) = I(x(i)), where x(i) €7 = [N—i~¥,ﬂ+¥
e Two Major steps: s o i
o Sampling

o Histogramming

Histogram Sort with Sampling

1. Each processor picks samples with probability ps,/N and broadcast.
2. Create a local histogram at each processor and sum them at central processor
3. Maintain a lower and upper bound Lj(i) and Uj(i) and update splitter intervals
N*1/p N*2/p N*3/p N*4/p N*S/p
Ideal Splitters I {
Histogramming round 1 } § l § I % I {
L1(1) ‘ ui1(1) L1(2) ' U1(2) L1(3) u1(3) L1(4) U14) L1(5) u1(s)
Splitter Intervals updated | ' ' ' ' |
after 1 round [: : : : 1
Histogramming round 2 I I {
1_2(1)' u2(1) L2¢2) L'/z(z) L2(3) 'u2(3) L2¢4) U2(4) 1_2(5.) u2z(s)
Splitter Intervals updated I . . : {
after 2 rounds * v : H

4. Sample using new intervals for j+1 round.

5. If j=k,

a. Histogramming phase is complete and
move to next step.

b. Else, if j<k, samples are collected at central
processor, and move towards next round of
histogramming.

6. Finally, the key closest to Ni/p is chosen as

the it" splitter.

N(+e)lp |t

S1

S2 S3 S4 S5

Ideal Splitting

S6

v

Experimental setup

Charm++

C++ based

Supports MPl communication protocol
Divides into processor elements called chares.
Steps:

o Local Sorting

o Splitter Determination

o Data exchange

Expected results of HSS

e Sampling ratio s= 'O(_P :flo%p) and k= log(log p/€)
e O(p) samples can achieve global sorting in O(log N/p + log log p) rounds
e Costs:
o Computation in local Sorting: O((N/p) log N/p)
o Sampling: O(S) at local processor and O(S log p) for sorting at central
processor
o Computing local histogram: O(S log N/p)
o Computation of sampling and histogramming per stage:
O(r log((log r)/e)) log N)
e Communication overhead due to multiple stage sorting.
e Overall histogramming rounds: ©(log log p)
e Overall sample size: O(p log log p)

HSS compared to other algorithms

AMS-sort
e Better for one round of histogramming by ©@(min(log p, 1/¢))
e HSS achieves a globally-balanced splitting, making it easily generalizable
e Takes approximately 3x time for splitting phase than HSS

HykSort
e Requires at least Q(log(p)/log?log(p)) times more samples.

e Slower convergence of splitters

Questions

1. Do more processors mean better
performance?

2. |S It possible tO have the reSU'.tiﬂg 7 Y
histogram look like this?

3. What would the worst case be?

\ 4

Thank you!

