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Abstract—Sorting is one of the most critical non-numerical
algorithms and covers use cases in a wide spectrum of scientific
applications. Although we can build upon excellent research over
the last decades, scaling to thousands of processing units on
modern many-core architectures reveals a gap between theory
and practice. We adopt ideas of the well-known quickselect
and sample sort algorithms to minimize data movement. Our
evaluation demonstrates that we can keep up with recently
proposed distribution sort algorithms in large-scale experiments,
without any assumptions on the input keys. Additionally, our
implementation outperforms an efficient multi-threaded merge
sort on a single node. Our implementation is based on a C++
PGAS approach with an STL-like interface and can easily be
integrated into many application codes. As part of the presented
experiments, we further reveal challenges with multi-threaded
MPI and one-sided communication.

Index Terms—Sorting, Searching, Combinatorial Algorithms,
PGAS

I. INTRODUCTION

Research in High Performance Computing (HPC) is still
dominated by numerical methods. However, there is an on-
going shift towards data-intensive applications pushing the
focus towards combinatorial problems. Sorting is one of the
most critical non-numerical algorithms and serves as a basic
building block for a wide spectrum of scientific applications.
Parallel sparse matrix computations can benefit from it [2].
Irregular applications, like N-Body particle simulations, can
achieve load balancing through space filling curves (e.g.,
Morton Order) by sorting n-dimensional coordinates according
to a projection into the 1-dimensional space [3], [4]. Big
Data applications, which are receiving increasing attention
in the HPC area, provide another huge amount of use cases
for sorting. One notable example is the Google PageRank
algorithm.

In this paper we study the problem of sorting a vector of
N elements partitioned among P processors. In the general
case, all partitions except potentially the last one, are of equal
size (∼ N/P ). The output invariant requires a partition on
processor pi to be a sorted permutation of input elements
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gratefully acknowledge funding by the German Research Foundation (DFG)
through the German Priority Programme 1648 Software for Exascale Com-
puting (SPPEXA) in the SmartDASH project. We further thank the authors
of paper [1] for providing us a copy of the Charm++ implementation source
code.

and no element may be larger than any other element on
processor pi+1. Furthermore each processor pi should end
up with at most N(1 + ε)/P elements, where ε is a load
balancing threshold. In the extreme case we have a strict
perfect partitioning condition where each processor needs to
have the exact same number of elements in the sorted output
as in the input sequence (ε = 0). According to our experience
this is not often required in scientific applications but preferred
due to simplicity and productivity in the application itself.

Key to achieving high performance is obviously to minimize
communication. This applies not only to distributed memory
but to modern shared memory architectures as well. Current
supercomputers facilitate nodes with heterogeneous computa-
tion and memory capabilities organized in a growing number
of NUMA domains to manage parallelism. Recent research
suggests that the network interconnect (NIC) is not necessarily
the sole bottleneck anymore. While it takes approximately
10−15ns for a CPU to fetch one 64 byte cache line from the
L3 cache [5] a NIC with 400 GBit/s bandwidth can transmit
one message of the same size every 1.3ns [6]. This correlates
with NUMA effects making the challenge more difficult.
Depending on the data distribution, sorting is subject to a
high fraction of data movement and the more we communicate
across NUMA boundaries the more negative the resulting
performance impact becomes.

Sorting algorithms are a well studied problem in computer
science and although we can build upon excellent prior work
we see a gap between theory and practice. In particular,
if we consider the architectural trends as mentioned before.
Exploiting the full potential of today’s supercomputers re-
quires efficient use of thousands of cores and minimizing
data movement, not only for performance reasons but also
to reduce the energy consumption. We engineer a practical
distributed sorting algorithm achieving a parallel efficiency of
≈ 0.6 on over 3500 cores which is a fair result if we consider
the high communication volume. In contrast to other work we
do not pose any assumptions on the input elements regarding
data distribution, data type, partition density (sparseness) or
the number of processors. Our implementation is based on a
partitioned global address space model (PGAS) which is not
only least on par with current state of the art algorithms on
distributed memory but outperforms high-performance multi-
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threaded shared memory libraries as well. We guarantee by de-
sign to move data only once to mitigate the impact of NUMA
effects as described earlier. Since we rely only on C++14 and
MPI-3 functionality it should be portable to any HPC cluster
and can be easily integrated into scientific applications.

The remainder of this paper is organized as follows. Sec-
tion II describes the problem of sorting in detail to set the stage
for this paper. Section III summarizes current state of the art
parallel sorting algorithms and discusses how they differ from
our approach. Section IV continues with basic building blocks
and focuses in particular on the selection algorithm used in our
sorting algorithm. Section V elaborates our algorithm in detail.
We primarily focus on our distributed selection approach
and discuss further optimization strategies which we studied
to improve the scalability of the overall sorting algorithm.
Section VI conducts strong and weak scaling studies on up
to 3584 cores to demonstrate the algorithmic performance.
Section VII concludes this paper and discusses future work.

II. PRELIMINARIES

Let X be a set of N keys evenly partitioned among P
processors, thus, each processor owns ni ∼ N/P keys.
We further assume there are no duplicate keys which can
technically be achieved in a straightforward manner. Sorting
is equivalent to permuting all keys over a binary relation in set
X . A binary relation is a predicate which we can successfully
apply to any ordered pair (x, y) drawn from X . Applying this
recursively enables us to determine the rank of an element
I(x) = k with x as the k-th order statistic in X . Assuming our
predicate is less than (i.e., <) the output invariant after sorting
guarantees that for any two subsequent elements x, y ∈ X

x < y ⇔ I(x) < I(y).

Scientific applications usually require a balanced load to
maximize performance. Given a load balance threshold ε, local
balancing means that in the sorted sequence each processor Pi
owns at most N(1+ε)/P keys. This does not always result in
a globally balanced load which is an even stronger guarantee.
Given a vector of splitters S of length P + 1 with S(0) = 0
and S(P ) = N .

Definition 1: For all i ∈ {1..P} we have to determine
splitter Si to partition the input sequence into P subsequences
such that

Ni

P
− Nε

2P
≤ I(si) ≤

Ni

P
+
Nε

2P

Determining these splitters boils down to the k-way selection
problem. Suppose we have two processors, each having the
same number of keys. We need to find a pivot r with rank
I(r) = N

2 to partition the global range into two subranges.
Keys in the left partition end up on one processor and the
right partition ends up on the other, respectively. After moving
all keys to the correct place each processor sorts the local
subsequence resulting in a globally sorted sequence.

Implementing selection efficiently is a challenging task
especially if we have a large number of processors and skewed
or nearly sorted data distributions which is not uncommon in

real world problems. Before we examine this in more detail
we first need to understand what efficient in this regard means.

In literature an efficient algorithm is one which solves
the problem at hand with low complexity [7], [8]. Defining
complexity depends on the algorithm itself. In selection and
sorting complexity is expressed as the number of comparisons
because the partitioning step, where all elements are compared
to a pivot, incurs the highest cost. Furthermore, we have to
distinguish between worst case, average case and best case
complexity. The latter is not of particular interest because
in general we cannot do better than O(N) for sorting. The
average case is which we attribute the highest attention to,
because it supports in reasoning about the expected runtime
in scientific applications. Finally, the worst case complexity
is relevant both in theory and in practice. If an algorithm has
unexpectedly higher worst case than average complexity it can
be exploited by a malicious user as part of the attack surface.

Another important aspect are inherent constants in algo-
rithms which are not part of the ”Big O” but cannot be
neglected in practice. As an example, although Quicksort
has higher worst case complexity compared to heap sort
with O(N2) vs. O(N logN) it is preferred in productive
implementations due to lower constants which give better
performance in the average case. Hardware innovation and
architectural changes impact these theoretical models as well
as we can confirm in the experimental evaluation. Even if
an algorithm has lower complexity, locality of reference often
outweighs theoretical performance advantages, especially if a
high fraction of data movement is involved.

III. RELATED WORK

Before discussing our approach in more detail we summa-
rize prior work. Our algorithm adopts ideas from sample and
histogram sort. We subsequently focus on practical sorting
algorithms which have experimentally been proven to be
scalable on distributed memory machines.

A. Sample Sort

Sample sort is one of the oldest sorting algorithms achiev-
ing high performance in distributed memory and extensively
studied in literature [9], [10]. It has been adopted in many
follow-up research papers including this one. Specifically, it
works in three supersteps:
1. Sampling Each processor pi picks a random sample of

size s, often called oversampling ratio, and sends it to
a central processor.

2. Splitting The central processor sorts these samples and
picks P −1 splitters. Each resulting interval between two
consecutive splitters is assigned to a single processor. The
splitters are broadcast to all processors.

3. Data Exchange All processors partition local data accord-
ing to the received splitters and exchange it with the
destination processors. This step denotes a single round of
ALL-TO-ALL communication. Upon receiving all chunks,
a processor can use any shared memory sorting algorithm
(e.g., merge sort) to sort the local subset.
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We clearly see that the load balancing quality and perfor-
mance efficiency depends on the sampling size. It has been
shown that with a total sample size of s = lnP

(1+ε2) we can
achieve almost perfect partitioning with high probability [11].
If ε becomes small we may have to perform another load
balancing step around the boundaries to satisfy the partitioning
conditions, which drastically decreases performance.

Mitigating the heavy dependency on random sampling can
be achieved through regular sampling [12]. This approach
probes keys from an already sorted list, which is why random
sampling is theoretically more efficient than regular sampling.
However, regular sampling has been shown to achieve better
performance in practice due to an almost perfect global
balancing [13].

B. Probabilistic Partitioning

Probabilistic partitioning comes close to the idea of sample
sort with one major difference. Instead of determining splitters
after a single round of sampling, we operate on a vector of
splitter candidates which are iteratively refined until the load
balance condition is satisfied. While this approach seems to
be less efficient, it has several advantages. It is much easier
to achieve perfect partitioning since we come closer to the
final splitter key with each iteration. Additionally, although
determining the splitter may take a number of iterations we
can use the already computed information to load balance the
data. Before explaining this in more detail we summarize the
relevant steps [14], [15], [1].

1) A central processor initially broadcasts a vector of P−1
splitter probes to all other processors.

2) Each processor performs a k-way partitioning based on
these splitters to obtain a local histogram.

3) All local histograms are reduced to a global histogram
on the central processor.

4) The central processor then determines if the cumulative
partition sizes satisfy the partitioning conditions. If this
is not the case for all splitters, we update the vector
of splitter probes and broadcast it again to all other
processors before continuing with step 2.

5) Each processor exchanges a portion of the local data
with all other processors in such a way that keys in range
i are sent to processor i. It is semantically a single round
of ALL-TO-ALL communication.

6) Each processors sorts the received chunks which results
in a globally sorted sequence.

The iterative process to determine the splitter keys is the
most critical step for achieving good performance. We can
optimize this using the core idea of sample sort. Instead
of histogramming on the whole set of keys we operate on
a sample of keys to pick initial guesses and continue with
histogramming on this sample [1], [16]. Similar to sample
sort we need a sufficiently large number of samples for
fast convergence to the final splitters. Axtmann et al. show
with AMS-sort that a sample of O(p(log p + 1

ε )) is required
to achieve locally balanced partitioning [16] with only one
round of histogramming. Extending this to multiple rounds of

histogramming achieves a global balance with an even smaller
sample size. Specifically, a constant number of samples per
processor O(p) over O(log(log p/ε)) suffices [1].

The general idea of histogramming is also a major com-
ponent in this work. In contrast to the earlier described
approaches we do not apply any sampling during the his-
togramming phase but focus on optimizing the initial splitter
guesses. The overhead of sampling each round does not pay
off in performance with our case studies.

C. High Performance Sorting Algorithms
Sorting algorithms which have been shown to be scalable

to a large number of MPI ranks employ topology-aware
optimizations or are even based on different concepts than
sample or partition sort.

Sorting networks like Batcher’s Bitonic Sort [17] are easy to
implement and often used in distributed memory applications.
The basic approach is to sort bitonic sequences with an
expected theoretical complexity of O(log2 n) for N/P = 1.
An adapted version generalizes it to O(N logN) for N/P >
1 [18]. However, the scalability cannot keep up with sample
sort if N/P � 1 because it transfers data logP times [10].

The prominent Quicksort has been adapted for hypercube
topologies by Wagar et al. [19]. Each processor partitions
the local data portion around a randomly chosen pivot. We
subsequently split the processor cube into two subcubes, one
for the lower half and the other for the upper half. Both
subcubes exchange data according to the pivot and merge
received chunks into the local data portion. This procedure
continues until we reach a recursion depth of log(P ), resulting
in a globally sorted sequence.

Hyksort [20] adapts this idea and combines it with his-
togramming techniques. Instead of looking for one pivot, it
partitions the data into k pivots and splits the group of all
processors into k + 1 groups, respectively. It is demonstrably
one of the fastest accessible sorting algorithms in distributed
memory.

The earlier mentioned AMS-sort [16] additionally employs
the technique of overpartitioning to obtain a better pivot selec-
tion. Similar to Hyksort, it divides the group of processors into√
P subgroups in order to load balance the data in successive

steps. The evaluation demonstrated strong scalability up to 215

processors.
In contrast to these papers our algorithm does not load

balance any data during splitter determination. Although there
are valid arguments for moving data in successive steps this
comes along with a communicator split each iteration in the
recursion tree. In MPI this operation takes linear complexity to
the communicator size and is a blocking collective operation
among all processors. In consequence this harms performance
in particular if N/P is small.

IV. DISTRIBUTED SELECTION

We continue with a discussion of the selection algorithm
which is a fundamental building block in our sorting approach.
After explaining the sequential and parallel 1-way selection we
generalize it to k-way distributed selection.
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Fig. 1: Position k relative to the partition sizes.

A. Overview

A naive way to obtain the k-th order statistic in a set is
first to sort the set and return the element at rank k. However,
this results in O(N logN) complexity. One of the classics in
algorithm lectures is quickselect, which is in essence a partial
quicksort and has expected linear time O(N) performance.
The underlying technique is effectively divide-and-conquer.
Let us randomly choose a pivot x. Then, we partition the set
around x. If x has rank I(x) = k we are done. Otherwise,
we recurse either on the left partition (if k < I(x)) or on the
right partition (if k > I(x)), as illustrated in Fig. 1.

Instead of randomized pivot selection, there exists also
a deterministic approach. It has been shown that we can
reduce quickselect’s worst case complexity from O(N2) to
O(N) using the median-of-medians algorithm for smart pivot
selection [21]. Although the traditional quickselect is often
preferred in practice, it is important to note that we can
achieve a linear worst case complexity. Since this algorithm
is so fundamental, many efforts have been made to further re-
duce complexity constants and improve practical performance
using a sample of the input sequence for effective median
finding [22], [23], [24].

The critical challenge is always to find a good pivot which
is usually close to the median, as fast as possible. Then we can
discard at least half the elements after the first iteration of the
selection algorithm. Extending the median of samples strategy
by assigning weights to each sample leads to the weighted
median [7].

Definition 2: Given a sequence of elements x1, x2, . . . , xn
with positive and normalized weights w1, w2, . . . , wn the
weighted median satisfies∑

xi<xk

wi <
1

2
and

∑
xi>xk

wi ≤
1

2

Finding the weighted median with quickselect is straight-
forward. Instead of counting the number of elements in each
partition we sum up the weights and recurse on the side that
has too much weight.

B. Parallel Selection

Solving the selection problem in parallel is extensively
studied in the PRAM model and requires O(log n/ log2 n)
time using a polynomial number of processors, which is the
maximum we can hope for in practice [25], [26], [27]. This
model is not applicable to distributed memory machines and
we need alternative solutions. Fujiwara et al. describe a deter-
ministic algorithm with O(min(log p, log2 n)) communication
rounds and O(n/p) local computation per round, subject to

the condition that n/p ≥ pc for any constant c > 0. The
number of communication rounds could be further reduced to
O(log2 p) using regular sampling [28]. Both algorithms are,
however, more of theoretical interest and have not shown to
be performance efficient in practice. Some algorithms use a
median of partitions strategy, which is a modified variant of
the median of medians, for clever pivot selection [29]. This
may lead to uneven (or sparse) partition distributions as the
algorithm proceeds iteratively on a smaller subset. Performing
some load balancing at the end of each step can mitigate
this problem, however, at an additional cost of expensive data
movement.

The weighted median has the same property as the median
of medians – we can discard at least one quarter of the input
elements – and data redistribution is not required anymore.
Since this algorithm is a fundamental piece in this paper we
briefly outline an implementation for distributed memory in
Algorithm 1 [30].

Each processor determines the median of its local partition
and broadcasts it to all other processors. Median mi is
weighted by the partition’s size ni in order to calculate the
weighted median M . All processors perform a 3-way partition
around M on their local portion, denoting the lower and upper
bound. If the k-th order statistic falls into the middle range
(i.e. L ≤ k < U ) we return m. Otherwise, we either recurse
on the lower (k < L) or upper (k > L− 1) half.

The subset X ′ to scan shrinks in successive steps. If the
size becomes too small the communication overhead is larger
compared to the remaining compute overhead and we can
switch to a single processor calculating the k-th element
sequentially.

We analyze this algorithm in terms of computational and
communication complexity. By definition of the median cal-
culated in line 4 each partition is bisected to half the number of
elements. This implies the weighted median reduces the total
size of working set X by at least one quarter (i.e. 3-to-1 split)
each iteration. It follows that the depth of recursive calls is at
most log4/3 P which we simplify to logP . The communica-
tion complexity for a single ALLREDUCE is O(logP ) since
we send and receive only one element per process. Hence, the
overall communication complexity is O(log2 P ).

Considering the computation complexity both the SELECT
and PARTITIONING operations take at most O(N/P ) steps.
Taking the communication rounds into account gives an overall
complexity of O(logP (N/P )) which confirms the expected
theoretical bound of O(D logN), where D is the network’s
diameter [31]. Current state of the art research applies two
additional optimizations on this algorithm. Pivot selection is
more efficient using sampling [24]. Another modification is to
split the group of p processes in phase i into subgroups of
size O(

√
P (i)) resulting in even better complexity [32].

V. DISTRIBUTED HISTOGRAM SORT

Given a set X of N keys distributed among P processors.
Each processor contributes a local capacity ni ∼ N/P . Our
distributed sort algorithms works in four supersteps.

Authorized licensed use limited to: Carleton University. Downloaded on September 29,2021 at 07:51:26 UTC from IEEE Xplore.  Restrictions apply. 

DELL
Comment on Text

DELL
Comment on Text

DELL
Comment on Text

DELL
Comment on Text



Algorithm 1 DSELECT (X , N , P , k)

Input: X is an input set of size N distributed among P
processors.

1: // Each processor goes through the following steps
2: pi ← local partition in processor i
3: ni ← length of partition pi
4: mi ← SELECT(pi, ni/2) // median in partition pi
5: M ← ALLGATHER m1..P

6: M ← normalize medians mi ∈M by wi = ni/N
7: m ← SELECT WEIGHTED(M) // find the weighted me-

dian
8: li, ui ← PARTITION(pi,m) // 3-way partition around pivot
m

9: L,U ← ALLREDUCE(l1..P , u1..P ,+)
10: if L ≤ k ∧ k < U then
11: return m
12: else if k < L then
13: N ′ ← ALLREDUCE(l1..P ,+)
14: DSELECT(pi[0..li], N ′, P , k)
15: else
16: N ′ ← ALLREDUCE(n1..P − u1..P ,+)
17: k′ ← k − U + 1
18: DSELECT(pi[ui..ni], N ′, P , k′)
19: end if

Local Sort All processors sort the local portion using a fast
shared memory algorithm with an expected O(ni log ni)
time complexity.

Splitting Partition the local array into P subsequences. We
generalize distributed selection to a distributed multise-
lection algorithm.

Data exchange Each processor exchanges locally sorted sub-
sequences i ∈ {1..P} with peer processor i.

Local Merge Each processor locally merges the received
sorted sequences.

In the following we discuss all phases, except the initial
local sort which is not of particular interest in this paper.

A. Splitter Determination

We generalize distributed selection (Algorithm 1) to de-
termine the splitters. Instead of finding one pivot we collect
multiple pivots (ranks) in a single iteration, one for each active
range. If a pivot matches a specific rank we do not consider
this range anymore and discard it from the set of active ranges.
Otherwise, we examine each of the two resulting subranges
whether they need to be considered in future iterations and
add them to the set of active ranges. The overall procedure is
the following.

Definition 3: We define a vector K of size P +1 as a prefix
sum series over all local capacities

K =

P∑
i=1

ni.

It is implied that K(0) = 0 and K(P ) = N to define the
outer limits.

We need to find a vector of splitters S with ranks K in X
to satisfy the partitioning conditions in Definition 1 using the
concepts of histogramming and selection. We suppose perfect
partitioning requirements (ε = 0) in the remainder of this
section.

Each splitter is represented as a tuple (Sil, Si, Siu), where
Sil (Siu) denote the lower (upper) bound of splitter Si.
Initially, Sil (Siu) equal the minimum (maximum) key in set
X . The goal is then to narrow the range [Sil, Siu] until Si
satisfies the partitioning condition.

Because partitions P1..p are locally sorted we can easily
determine the lower and upper bounds (i.e., li and ui) based
on binary search in Pi to obtain a local histogram in each
iteration. Summing the local histograms over all ranks gives
the global histograms defined as the pair (Li, Ui) of splitter
Si.

Definition 4: A single splitter Si is successfully determined
if Li and Ui satisfy the following condition.

Li(Si) < Ki+1 ∧Ki+1 ≤ Ui(Si),where i ∈ {1, 2, . . . , P}.

If the condition cannot be satisfied we move the splitter Si
either towards Sil or Siu as shown in algorithm 2.

Algorithm 2 VALIDATE SPLITTER(Si,K, Li, Ui)
Input: S is the set of all splitters, K the set of ranks

1: if Li < Ki+1 and Ki+1 ≤ Ui then
2: return true
3: else if Li ≥ Ki+1 then
4: Siu ← Si
5: else
6: Sil ← Si
7: end if

Algorithm 3 outlines our histogramming algorithm. We first
initialize all splitters with the minimum and maximum key
over the global key range. Gathering the tuple (min,max)
can be implemented as one reduction with time complexity
O(logP ). Then, we iteratively determine the splitters. We
first collect a local histogram through the lower and upper
bounds using binary search. Obtaining the global histogram
is straightforward with a single ALLREDUCE. Based on the
global histogram each process validates the splitters.

A relevant question is the number of iterations until we
converge to the final splitters. Two parameters are of particular
interest:

1) Key size (i.e., bits per key), and
2) Uniqueness of the keys.
With normally and uniformly distributed keys the number

of iterations is bound by the key size. As an example if
we sort 64-bit floating point numbers the overall median lies
in the range 60–64 iterations. Sorting 32-bit floats can be
accomplished in 25–35 iterations. The number of processors
does not impact the number of iterations. This behavior is
not unsurprising. In each iteration we bisect the key range of
possible splitter candidates, i.e. a single bit.
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This does not apply well for skewed data distributions
or if we are sorting many equal keys. The reason is that
narrowing the splitters by bisection does not necessarily reflect
a change in the histograms over the key set. We transform
all equal keys into globally unique keys to improve the
algorithm’s stability. A technically straightforward approach is
the following: Each key x is defined as a triple (x, y, z) where
y and z denote the processor id and the local index in the input
sequence [16]. However, it comes at a cost to communicate
additional metadata during histogramming which we have in
common with other sorting algorithms.

Algorithm 3 FIND SPLITTERS(X, K, P)
Input: X is an input set of size N distributed among P

processors.
1: // Each processor goes through the following steps
2: pi ← local partition in processor i
3: (min,max)← ALLREDUCE(pi..P )
4: (Sil, Si, Siu)← (min, 0,max)
5: repeat
6: Si ← (Sil + Siu)/2
7: (li, ui)← BINARY SEARCH(pi, Si) // local histogram
8: (Li, Ui)← ALLREDUCE(li, ui,+) // global histogram
9: VALIDATE SPLITTER(Si,K, Li, Ui)

10: until all splitters found

For completeness we again analyze the overall complexity
which is given by expanding all steps in Algorithm 1. We
know from prior analysis that the number of iterations is bound
by either O(log p) or the key size. Finding the local median
requires O(log ni) because the local portion is already sorted.
We assume a constant O(1) complexity for the normalization.
Calculating the weighted median has an expected linear com-
plexity of O(p). In the last step we need to binary search over
p target ranks. Multiplying all terms results in

O(p(log ni) + p+ p(log p)) = O(p(log p) + p(log ni))

computational complexity per iteration. We additionally need
O(p) space on each process for communicating the reduction
operations. For the communication overhead we have two
broadcasts, each processor sends O(p) data to all others.

We want to highlight that our algorithm does not rely on
any restrictions about the key distribution and number of
processors to efficiently determine the splitters. Moreover our
implementation handles any partitioning of input keys, for
example sparse vectors (matrices).

B. Data Exchange

After determining all splitters each processor prepares for
the final MPI ALL-TO-ALLV data exchange. Recall that the
local range is split into P segments. We have to compute a
global permutation matrix L of size P × P to determine the
final partition distribution.

Collecting this information first requires the lower and upper
bounds (li, ui) of splitter Si. We exchange these in a single
ALL-TO-ALL communication. As a result, processor i knows

li and ui of all other processors which have to deliver data to
processor i. In perfect partitioning or in-place scenarios we
still may need refinement around the borders. It is guaranteed
that up to the lower bound li we never exceed the local
capacity ni. There are exactly Ki − li excess elements for
processor i which have to be filled up. We assign from the
remaining contingent ui −Ki among all processors until the
number of elements matches capacity ni. Algorithm 4 lists the
relevant steps.

Algorithm 4 PERMUTATION MATRIX(L,U,K, ni, P )
Input: L and U result from the ALL-TO-ALL histogram

exchange.
1: si ← ACCUMULATE(li,+) for i = 1..P
2: for all i such that 0 ≤ i ≤ P and si 6= ni do
3: ei ← Ki − li // excess elements on unit Pi
4: si ← si +min(ei, ni − si)
5: end for

Following this approach allows us to compute permutation
matrix L in parallel where the i-th processor is responsible
for the i-th row. The eventually refined permutation matrix L
needs to be exchanged in another ALL-TO-ALL communication
to obtain send counts of processor i to all other processors.
Summing up each row locally as a prefix sum provides the
send displacements.

For the receiving side we need to follow a similar approach.
An exclusive scan with operation minus on L gives the receive
count. Summing each resulting row locally in another prefix
sum provides the receive displacements.

In total, the communication overhead sums to two ALL-
TO-ALL collectives with O(p2) elements to be exchanged,
and a single EXCLUSIVE SCAN. Both collective operations
result in a complexity of O(p log p) to exchange necessary
displacements.

Finally, each processor performs a ALL-TO-ALLV data ex-
change with all communication peers and subsequently merges
received subsequences.

C. Local Merge

After receiving all chunks from the other processors, we
have to finally merge them into a single sorted sequence. There
are two approaches to accomplish this. Either we again sort the
full array with an expected time complexity of O(NP log N

P )
using a fast shared memory sort, or we merge it out-of-place
in O(NP logP ) using a binary merge algorithm. All pairwise
merges can be performed in parallel. Another technique is a
tournament tree [8] where we construct a min (max) heap
based on the P chunks. In each round we select the smallest
element out of P chunks and push it into a heap of size
P . In a tournament tree there is a O(logP ) cost to insert a
single element into the heap. If P is small enough tournament
trees are even cache efficient since it incurs only O(N/B)
cache misses, where B is the length of a single cache line. In
contrast, a binary merge requires each element to be merged
O(logP ) times. However, we can start merging as soon as
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TABLE I: SuperMUC Single Node Specifications.

CPU 2 x E5-2697v3
Memory 64GB (56GB usable)
Network Infiniband FDR14

Compiler ICC 18.0.2
MPI library Intel MPI 2018.2

two chunks are transmitted while a tournament tree requires
all chunks in advance.

Similar to sorting there is a excellent prior work, both from
a theoretical and practical perspective. However, achieving
good performance by overlapping merging (computation) and
communication is another challenge. Section VI-E discusses
several reasons on this. In this paper and the evaluated
implementation we rely on another shared memory sort to
“merge” all sequences.

VI. EVALUATION AND ANALYSIS

We present both weak and strong scaling studies to demon-
strate the algorithmic efficiency on distributed and shared
memory, respectively. On distributed memory we compare our
C++ PGAS implementation against a Charm++ sorting algo-
rithm which is described in a recently published preprint [1].
Our intent was to integrate Hyksort [20] as well. The publicly
accessible code1 first failed to compile. After fixing this we
got a runtime error as soon as the globally allocated memory
over all MPI ranks exceeded 4GB in total which is obviously
too small for our experiments. We are communicating this to
the authors.

In all benchmarks we perform perfect partitioning (ε = 0),
serving as a good basis for analyzing the scaling behavior of
our sorting algorithm. In shared memory we compete against
Intel’s Parallel STL implementation which is included in the
icc compiler suite since major release 2018.

A. Implementation Details

We conducted the experiments on SuperMUC Phase 2
hosted at the Leibnitz Supercomputing Center (LRZ). To better
understand the benchmark results we briefly describe our own
implementation and architectural details.

1) DASH: Our implementation is integrated into DASH
which is a C++14 template library based on the partitioned
global address space model (PGAS)2. PGAS is a distributed
memory abstraction distinguishing between local and remote
partitions in the global address space. Using a one-sided
communication interface we can always operate on global
data. However, following the owner computes model to operate
on local data is crucial to achieve performance scalability.

Inspired by the C++ STL concepts we provide containers
and algorithms to operate on global data [33]. The main
objective is to facilitate the trade-off between performance
efficiency and productivity with a zero cost abstraction. While

1https://github.com/hsundar/usort
2https://github.com/dash-project/dash/

our runtime conceptually supports multiple communication
substrates we only use MPI-3 RMA capable libraries in this
paper. DASH is lightweight and complements well with other
HPC libraries in scientific codes.

A major benefit of PGAS is that we can use fast shared
memory semantics if processors communicate intra-node.
More specifically, we replace collective communication by
fast memcpy operations which gives us significant performance
benefits as demonstrated in Section VI-D.

2) LRZ Supercomputing Centre: SuperMUC Phase 2 is
an island-based computing cluster, each equipped with 512
nodes. However, we were not able to reserve more than
one island3. Each node has two Intel Xeon E5-2697v3 14-
core processors with a nominal frequency of 2.6GHZ and
64GB of memory, although only 56GB are usable due to the
operating system. Computation nodes are interconnected in a
non-blocking fat tree with Infiniband FDR14 which achieves
a peak bisection bandwidth of 5.1 TB/s. Table I summarizes
relevant specifications.

We compiled all codes using icc 2018 Update 2. As our
communication substrate we experimented with two MPI-3
compliant libraries, Intel MPI 2018.2 and IBM POE v1.4. We
report only results from Intel MPI as the IBM library does not
support MPI-3 shared memory windows which enables us to
exploit shared memory semantics in the DASH library.

B. Strong Scaling Analysis

We first compare our sorting algorithm against a Charm++

implementation and discuss subsequently the scaling behavior.
For Charm++ we compiled the most recent stable release4

with MPI-3 and OpenMP support, the same software stack
as in DASH. On each node we scheduled 16 MPI ranks,
although we have 28 cores available. Both numbers result from
limitations in the Charm++ implementation which requires the
problem size and the number of processors to be a power of
two. Although the Charm++ implementation is prototypical,
as noted in the paper [1], we want to emphasize that our
implementation does not depend on such constraints. For local
sorting both algorithms use a single-threaded C++ STL sort.

In our benchmark we generate 64-bit unsigned integers,
uniformly distributed in the range [0, 109] using a Mersenne
Twister engine from the C++ STL library. We experimented
on a normal distribution as well, however, the Charm++

implementation failed to find the final splitters, i.e., it could
not terminate before the job’s wall clock limit (fixed to 30
minutes).

The strong scaling performance results are depicted in
Figure 2(a). We always report the median time out of 10 exe-
cutions along with the 95% confidence interval, excluding an
initial warmup run. In Charm++ we can see wider confidence
intervals. We attribute this to a volatile histogramming phase
which we can see after analyzing generated log files in the
Charm++ experiments.

3Due to maintenance issues.
4v6.9.0, http://charmplusplus.org/download/
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(b) Strong scaling behavior of dash::sort

Fig. 2: Strong scaling study with Charm++ and DASH.

Overall, we observe that both implementations achieve
nearly linear speedup with a low number of cores. Starting
from 32–64 nodes (∼ 1800 cores) scalability gets worse.
DASH still achieves a scaling efficiency of ≈ 0.6 on 3500
cores while Charm++ is slightly below.

We further analyze the scaling behavior in DASH. It is
clear that the local work load is proportional to the number
of processors. With fewer processors the initial and final
sort consume most of the time. The communication overhead
during histogramming, which takes ∼ 30 iterations to find
the final splitters, can be almost neglected. This changes if
we scale to a higher number of ranks (> 2000). Recall that
each iteration requires a collective ALLREDUCE among all
processors. Figure 2(b) visualizes the relative fraction of the
most relevant algorithm phases in a single run. It clearly
identifies histogramming as the bottleneck if we scale up the
number of processors. This is not surprising because with
128 nodes (2048 ranks) each rank operates on only 8MB
of memory. If we had had the possibility to allocate more
memory per node the saturation point would have shifted to a
higher processor count. We can further see that the ALL-TO-
ALL data exchange overhead is relatively stable which stems
from the fact that the communication volume per processor
decreases while putting more processors on the workload. The
constant overhead to prepare the data exchange, denoted as
“Other”, can be also neglected.

We certainly get a better scaling if we soften the perfect
partitioning requirement as the number of histogramming
iterations decreases. Nevertheless there is room for improve-
ment. Based on related work and as discussed in Section V
we can expect better performance if we split the group of
processors into smaller subgroups. Furthermore, if we apply
histogramming only on a sampled fraction of the initial input
data we gain additional benefits. We evaluate these approaches
in further research.

C. Weak Scaling Analysis

For weak scaling we used the same setup as in strong scaling
with a uniform data distribution of 64-bit unsigned integers.

However, this time we allocated 2GB of memory per node
(128 MB per rank). This is a relatively small memory footprint
but we want to prevent the local sort to be the bottleneck in
order to understand the scaling efficiency. Let us first discuss
what we can expect without looking at the plot. Due to the
constant number of histogramming iterations the incidental
communication overhead grows proportional to the number
of processors. More specifically, we have to communicate
more splitters among more ranks. However, in contrast to
strong scaling, the communication volume for the ALL-TO-
ALL exchange grows exponentially and clearly dominates the
algorithmic complexity.

Figure 3(a) depicts the weak scaling efficiency. The absolute
median execution time for DASH started from 2.3s on one
node and ended with 4.6s if we scale to 128 nodes (3584
cores). As expected, the largest fraction of time is consumed
in local sorting and the ALL-TO-ALL data exchange because
we have to communicate ≈ 256GB across the network.
Figure 3(b) confirms this. The collective ALLREDUCE of P−1
splitters among all processors in histogramming overhead is
almost amortized from the data exchange which gives an over-
all good scalability for DASH. On the other hand, Charm++

cannot keep up with our implementation. Their histogramming
algorithm again shows high volatility with running times from
5 − 25s, resulting in drastic performance degradation. We
cannot see any obvious reason for this and suspect improper
sampling in each histogramming round.

Although DASH achieves satisfactory performance we have
to address the scalability of the ALL-TO-ALL data communi-
cation. One approach is to integrate ALL-TO-ALL and a k-way
binary tree merge. Adapting a 1-factor algorithm [34] to merge
received chunks in each communication round improves the
possible communication-computation overlap as each merge
“gives” more time to complete a pending data transfer. Another
reason for the bad scalability may be that MPI ALL-TO-
ALL communication is more optimized for small messages
and not for huge chunks as in this case. Additionally we
consider cache-oblivious communication algorithms for intra-
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Fig. 3: Weak scaling study with Charm++ and DASH.

node communication to reduce the communication time.

D. Shared Memory Benchmarks

Due to the increasing complexity with heterogeneous shared
memory architectures PGAS semantics are a natural fit to
model NUMA locality. With this motivation in mind we tried
not only to be efficient on distributed memory machines but
on shared memory as well. While there are many highly
optimized sorting implementations, the most frequently used
multi-threaded general purpose sorting algorithm is merge sort.
Intel provides an efficient tasking implementation based on
Intel Thread Building Blocks (TBB) and recently released it
to LLVM and GNU for use in C++17 parallel algorithms. We
conducted an experiment to study NUMA effects with sorting
in shared memory. Since we move data only once being able to
keep up with a fast shared-memory implementation is not too
ambitious. We compare our sorting algorithm against Intel’s
Parallel STL implementation. For reference, we include an
OpenMP task-based merge sort, provided from Intel, as well.

A single Node on SuperMUC Phase 2 has 4 NUMA
domains, each attached with 7 cores (14 hardware threads).
For this case study we allocated 64-bit double precisions
with 5GB total memory. We generated normally distributed
numbers in the interval [−1E6, 1E6] using a mean of 0 and
standard deviation 1. The benchmark measures strong scaling
from 7 to 28 cores (1−4 NUMA domains). More specifically,
we start by allocating data on 1 NUMA domain and occupy
only 7 attached cores. Then we evenly partition data across two
NUMA domains and put 14 cores on it for sorting, etc. DASH
runs MPI ranks instead of threads and we use numactl to
guarantee a correct pinning in all measurements. Figure 4 plots
the performance results. Note that we utilized hyperthreading
(2 threads per core) because both TBB and OpenMP achieved
better performance. While we see a performance penalty
compared to TBB if we occupy only one NUMA domain
we surpass TBB if data needs to be communicated across
NUMA boundaries. Again, even the histogramming overhead
is amortized through data movement. A surprising insight
is that we gain a benefit from hyperthreading with a heavy
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Fig. 4: Shared Memory Benchmarks

MPI stack under the hood. Intel TBB merge sort is certainly
not an aggressively optimized implementation, however, it
does confirm the hypothesis that we can compete with our
implementation on shared memory as well.

E. Discussion

Although the main contribution of this paper is an efficient
multi selection algorithm to find the splitters, the evaluation
results reveal two primary bottlenecks.

First, the ALL-TO-ALLV data exchange consumes a high
fraction of the overall running time, in particular during the
weak scaling studies if both the data volume and processor
count increases. This is not surprising and recommends to
perform some load balancing during histogramming. How-
ever, decoupling data movement from splitting does not only
simplify the overall implementation. We immediately benefit
from future improvements in MPI libraries and we can reuse
our distributed selection implementation as a building block
in other DASH algorithms, e.g. dash::nth_element.

Second, the final merge is still another shared memory
sort which is not optimal if we reason with the algorithmic
complexities in mind. We discuss both issues and outline

Authorized licensed use limited to: Carleton University. Downloaded on September 29,2021 at 07:51:26 UTC from IEEE Xplore.  Restrictions apply. 

DELL
Comment on Text

DELL
Comment on Text

DELL
Comment on Text

DELL
Comment on Text



possible improvements which we are studying for a more
detail paper.

1) ALL-TO-ALLV COMMUNICATION: We can tune our
own all-to-all algorithm. Constructing send-receive pairs us-
ing explicit point-to-point communication is straightforward.
Upon receiving at least two chunks we can asynchronously
start a merging task and overlap it with the next communica-
tion round. Depending on the message length we can utilize
specific algorithms to achieve the best performance. For a
relatively small N/P we utilize store-and-forward algorithms
which communicate data in intermediate steps in dlog(p)e
rounds. For larger messages we schedule flat handshakes or
1-factorization algorithms [34], [35] to trade off latency and
bandwidth bottlenecks. In a PGAS abstraction we have further
potential for optimizations especially in shared memory and
if two nodes are closely connected to each other. If a pair
of processors resides on the same node we do not need
to initiate any MPI calls but use fast memcpy semantics.
A good implementation takes cache efficiency into account
to minimize false sharing. For inter-node communication we
borrow techniques from studies about hierarchical collectives
and utilize our PGAS model to fully overlap communication
and merging. A set of dedicated leader cores on a single node
is responsibly for communication while the others perform
the merging process. Synchronization is performed through a
node-local producer-consumer queue which is accessible for
all cores. Each pairwise exchange enqueues a communication
request and whenever a data chunk is available it enqueues a
merge request. This has two advantages. First, it minimizes
network congestion as only a set of processors move data
across the node boundary. Second, depending on the work
load processors can change their role.

2) Parallel k-way Merging: Our final merge on the received
subsequences from the data exchange was initially based on
a parallel binary merge tree as described in Section V-C.
However, we faced unexpected low performance in the final
merge step with large data volumes. For this reason we
conducted separate experiments to understand the performance
in more detail. We assume an almost perfectly load-balanced
scenario where all chunks have the same size (i.e. O( NP 2 )) and
values are drawn from a uniform distribution. We implemented
our own k-way binary merge using OpenMP tasks and GNU
Parallel provides a multi-threaded k-way merge routine using
tournament trees. The baseline is a parallel merge sort from
the Intel Parallel STL which is a task based merge sort
implemented with TBB tasking. We executed the benchmarks
on a single node of SuperMUC Phase 2. The problem size
is the same as in our sorting experiments with 16GB 32-
bit integer keys while varying the number of threads and
the number of chunks. Our experiments show similar issues
among all merging algorithms. Scheduling only two threads
achieves a notable speedup with fewer large chunks. However,
the trend changes if we merge many but relatively small
chunks. Scheduling many threads for merging many small
chunks causes drastic performance degradation due to a high
fraction of cache misses. Processing many merge tasks in

parallel with another parallel sort clearly outperforms merging.
We leave this problem as an open question for future work and
may consider a cache oblivious merge algorithm [36].

VII. CONCLUSION

We have discussed building blocks to engineer a perfor-
mance efficient sorting algorithm based on histogramming
and selection. Our implementation shows good scalability on
parallel machines with a large processor count. Compared
to other algorithms we do not pose any assumptions on the
number of ranks, the globally allocated memory volume or
the key distribution. Performance measurements reveal that we
can keep up with recently published high performance sorting
algorithms. We get the best result if P and N are not too
much out of kilter which agrees with measurements in related
work. Furthermore we put efforts to keep the implementation
as efficient as possible which is why we provide notable
performance on shared memory architectures as well. We
are aware of edge cases where our implementation does not
provide the best performance, for example if N/P is very
small. However if we keep the general purpose motivation
in mind our algorithm is on par with current state-of-the-
art. The algorithm’s interface is in accordance with C++

std::sort and can be easily integrated into a scientific code
base which requires efficient sorting. Additionally, we can
handle sparse data structures where a fraction of all processors
do not contribute local elements. This is useful for example
in numerical algorithms to load balance sparse matrices [2].

In future work we have to scale to more processing entities,
which we could not do for this paper due to maintenance
issues at the LRZ supercomputing center. We further address
the overhead of histogramming in strong scaling. We see the
most potential in efficient sampling mechanisms to reduce
the number of histogramming rounds, while reducing the
group size of communicating ranks at the same time. Another
problem remains the all-to-all data exchange. We are studying
and optimizing this in the scope of another paper which is
already in progress.
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